
Inductive System Health Monitoring

David L. Iverson
NASA Ames Research Center

Mail Stop 269-4
Moffett Field, CA 94035

David.L.Iverson@,nasa.gov
Phone: (650) 604-3 1 15

Abstract - The Inductive Monitoring System (IMS) sojiware was developed to provide a technique to
automatically produce health monitoring knowledge bases for systems that are either dificult to model
(simulate) with a computer or which require computer models that are too complex to use for real time
monitoring. IMS uses nominal data sets collected either directlyfrom the system orji-om simulations to
build a knowledge base that can be used to detect anomalous behavior in the system. Machine learning and
data mining techniques are used to characterize typical system behavior by extracting general classes of
nominal data from archived data sets. IMS is able to monitor the system by comparing real time
operational data with these classes. We present a description of learning and monitoring method used by
IMS and summarize some recent iMS results.

Keywords: System Health Monitoring, Inductive Learning, Clustering, WHM

1.0 Introduction

Model based reasoning is a powerful method for performing system monitoring and diagnosis.
Typical model based reasoning techniques compare a system model or simulation with system
sensor data to detect deviations between values predicted by the model and those produced by the
actual system. [11 In effect, a model based reasoner uses the collected system parameter values as
input to a simulation and determines if a particular set of input values is consistent with the
simulation model. When the values are not consistent with the model a "conflict" occurs,
indicating that the system operation is off nominal (when compared to the presumably correct
model). [2] Building models for model based reasoning is often a difficult and time consuming
process. The Inductive Monitoring System (IMS) provides a method that can monitor the health
of a system with nearly the same fidelity as a model based reasoner, but without the need to
manually build a model. IMS automatically defines groups of consistent system parameter data
by examining and gmeralizi&omexamples of nominal systemdab.G€hsyitmme&-were-
available, a set of data values selected from one of these groups and presented to the model would
typically compute without conflicts. With a sufficiently broad training data set, the knowledge
base produced by IMS should contain most or all of the consistent parameter value combinations
necessary to effectively characterize and monitor nominal system operation. M e r learning how

the system behaves when operating correctly, IMS can identify off nominal behavior and send
appropriate alert messages to system operators.

Pressure Valve 1 Pressure Valve 2 Pressure Temperature Temperature
A Position B Position C 1 2

2857.2 86.4% 1218.4 96.2% 1104.1 49.8 37.6

2.0 Learning Nominal System Behavior

High

Low

IMS automatically builds monitoring knowledge bases from nominal data sets collected either
directly from the system or from simulations. Machine learning and data mining techniques are
used to characterize typical system behavior by extracting general classes of nominal data from
archived data sets. In particular, IMS uses clustering to group sets of consistent parameter values
found in the training data. Clustering is the unsupervised assignment of elements of a given set to
groups or clusters of similar points. [3] The implementation of IMS described here draws from
two clustering techniques: K-means clustering [4] and density-based clustering [5] .

Pressure Valve 1 Pressure Valve 2 Pressure Temperature Temperature
A Position B Position C 1 2

2857.6 86.8% 1219.2 96.3% 1105.0 50.1 38.2

2855.8 86.2% 1215.7 95.5% 1103.2 49.6 37.5

2.1 Data Vectors

The basic data structure of the IMS algorithm is a vector of system parameter values. (Fig. 1)
Each vector is an ordered list of parameters collected from the monitored system by a data
acquisition process. The vectors can also contain derived parameters computed from collected
data. These vectors define the points in N-dimensional space that are grouped by the IMS
clustering algorithm. The values used in a given vector may be collected simultaneously by the
data acquisition system, or collected over a period of time. The user specifies the size and
contents of the vector structure to match the monitoring application.

Figure 1 - Sample IMS vector

Figure 2 - Sample IMS cluster structure

2.2 Building Clusters from Nominal Data

IMS processes the training data by formatting input data into the predefined vector format and
building a knowledge base containing clusters of related value ranges for the vector parameters.
(Fig. 2) Each cluster defines a range of allowable values for each parameter in a given input
vector. The vector of high values and the vector of low values in a cluster can be thought of as
comers defining a minimum bounding rectangle in N-space. Points that fall inside or very near

- - ~ ~ ~ ~~ ~ - - - ___- -

this rectangle are considered to be within the system’s nominal operating range, since the
rectangles are defined by nominal data. The high and low ranges for each element in the cluster
can also be considered as allowable ranges for the corresponding parameter, provided the other
parameters are within the other ranges specified in that cluster. This view is similar to model-
based reasoning with interval arithmetic where simulations are performed using a range of
possible values for each parameter, rather than a single value. [6]

IMS starts the training process with an empty cluster database. It reads the nominal training data
and formats it into vectors. The first vector is inserted in the database as the initial cluster. Each
subsequent input vector is compared to the contents of the cluster database to find the cluster that is
closest to the vector. The distance between a vector and a cluster can be measured using a variety
of metrics. The standard Euclidean distance metric has proven effective for many applications. To
calculate the distance between a given cluster and a vector, a point contained in the cluster is
selected and the distance between that point and the vector of interest is computed with the distance
formula. Different methods for selecting the point in the cluster can be used depending on desired
results. One option, based on the K-means clustering method [4], measures the distance from the
centroid of the cluster found by forming a vector from the average of the high and low values for
each cluster parameter. For each new training input vector, IMS finds the cluster in the database
that is closest to that input vector. IMS then determines if the input vector is contained in the
bounding rectangle defined by that cluster, or if it is close enough to be incorporated into the
cluster. As in density-based clustering [5] , a threshold value, E, specified by the user defines the
maximum allowable distance between a cluster and vector to determine if the vector should be
incorporated into the cluster. If the vector is close enough (distance less than or equal to E), the
cluster parameter intervals are expanded as necessary to include the new vector. If the distance
between the training vector and the closest cluster in the database is greater than E, a new cluster
containing the vector is formed and inserted in the database. This learning process repeats until all
of the training data has been processed and incorporated into clusters in the knowledge base. A
smaller E value will result in smaller clusters that provide tighter monitoring tolerance, but will
spmetines produce a larger than desired monitoring knowledge base. A smaller knowledge base
allows real-time monitoring at a higher data rate. The value of E can be adjusted to balance
knowledge base size and speed versus monitoring tolerance.

It can be usehl to scale or normalize the data values before they are inserted in the vectors. For
instance, each parameter can be scaled to represent a percentage of the maximum range for that
parameter and the user can select a metric such that the distances between vectors and clusters are
a percentage of the maximum distance found in the training data. This can give the user a more
intuitive understanding of the monitoring knowledge base and the significance of any off-nominal
system behavior encountered during system monitoring. Data values can also be relatively scaled
to provide weighting of given parameters. For instance, scaling a parameter to have a larger
possible range relative to other parameters in the vector will amplify any deviations in that
parameter. Other combinations of data normalization and distance metrics may be useful for
various situations.

After IMS processes all training data, the result is a database of clusters that characterize system
performancein the operating regfmmvered by the training-data; In essence, eachdmter - - -

defines constraints on the values allowed for each parameter in any particular monitoring input
vector. If there is no cluster in the database that contains a given input vector or is “near” that
input vector, then the system is behaving in an unexpected manner, indicating a possible system
anomaly.

-

3.0 System Health Monitoring

To use the cluster knowledge base for system health monitoring, IMS simply formats the real time
data into vectors and queries the knowledge base to locate the cluster that is closest to each input
vector. The fastest IMS monitoring schemes require that the input data vectors be contained inside
at least one of the knowledge base clusters (all parameter values are within the ranges specified by
the cluster limits). This eliminates the need to perform distance calculations. A more informative
monitoring technique will locate the cluster in the monitoring knowledge base that is closest to the
input vector, and report the distance of that vector from the cluster. This will give the operator an
idea of how far the system behavior is deviating from nominal operation as represented by the
training data. Typically, if a vector is not contained within a cluster, the distance between the
vector and the closest point in the bounding rectangle defined by the nearest cluster is reported.
The monitoring program can account for incomplete training data or measurement inaccuracies by
setting a tolerance on the maximum allowable distance of the input vector from the nearest cluster
for the vector to be considered nominal data; i.e., the input data must be “close enough” to previous
nominal data to be considered nominal. The monitoring program could also use multiple tolerance
values to determine the level of alert to send to the operators. An input vector further than a given
distance from the nearest cluster may indicate a significant problem requiring immediate attention,
while a vector somewhat closer than that limit may be suspect enough to warrant extra vigilance,
but not require immediate action. To gauge general system health or to track general system
behavior over time, the monitoring interface could graph or summarize the distance the input
vectors collected during the time of interest have fallen from the nominal clusters.

In order to use the IMS generated cluster database for real time or near real time system monitoring,
an efficient cluster indexing and retrieval scheme may be required. Several applicable schemes
have been developed in the area of nearest neighbor searching. [7] In order to allow searching the
database for the closest cluster, the scheme must include a distance metric and the ability to return
the record that is nearest to the query point, not just those that contain the query point. The search
and retrieval speed must also be sufficiently fast to keep up with the expected data acquisition rate.
An efficient indexing and retrieval scheme can also help to speed up the initial IMS training process
since it makes similar closest cluster queries. IMS applications to date have successfully monitored
1 KHz data rates without distance calculations and 50 Hz data rates with distance calculations on
computers running with clock speeds under 1 GHz.

4.0 IMS Application Example

The IMS methodology is domain independent and can be used in a variety of system monitoring
situations including aerospace, transportation, manufacturing, power generation and transmission,
medical, or process monitoring applications. Of particular interest to NASA is the application to
Integrated Vehicle Health Management (IVHh4), either on board a vehicle or in a mission control
room. To demonstrate the utility of LMS in a mission control setting, we recently built an IMS
knowledge base to monitor temperature sensors in the wings of a Space Shuttle Orbiter, and used

- - ~ that ~ o ~ l e d g m e t r y data_collected from theill-fatedSTSs-1_07 .

Columbia Space Shuttle mission. This flight came to a disastrous end when the Columbia orbiter
was destroyed during reentry, claiming the lives of all seven crew members. The ultimate cause of
the accident was determined to be a breach in the Thermal Protection System on the leading edge of
the left wing, caused by a piece of insulating foam that struck the wing approximately 82 seconds
after launch. The first indication of the damage that was noticed by mission controllers monitoring
telemetry data was not seen until Orbiter re-entry, 17 days after launch. That anomaly was a slight

. I

increase in a brake line temperature of the left main landing gear that occurred about seven minutes
before the destruction of the vehicle. [8]

4.1 IMS STS-107 Analysis

The post mission IMS analysis of the STS-107 Columbia flight concentrated on telemetered data
from temperature sensors in the wings of the orbiter. Analyses of telemetry data from two flight
phases, launchlascent and on-orbit, were conducted. In both analyses IMS detected anomalies
much earlier in the data than monitoring systems available in mission control. This example will
focus on the STS-107 launch and ascent analysis.

IMS knowledge bases for the launch and ascent analysis were generated from training data
collected during five previous Columbia flights. Separate knowledge bases were generated for
each wing. Training vectors were formed from four corresponding temperature sensors in each
wing of the Orbiter. (Fig. 3) Since ambient temperatures differed on each flight, the data vectors
were normalized to the most centrally located sensor (Main Gear Brake Line Temperature D) by
expressing the other sensor values relative to the value of that sensor in each telemetry time slice.
The resulting vectors contained three parameters each. In the results shown here, monitoring was
M e r focused by comparing sets of data in a moving four second window (typically 12 to 16
data points). These data windows were normalized by shifting the points to move the centroid of
the window to the origin. The points retained their relative positions within each window. The
data sets used for training and analysis covered the time period from launch through ascent to just
before Main Engine cut off. The resulting left wing knowledge base contained 490 clusters and
the right wing knowledge base contained 237 clusters.

Figure 3 - Left Wing Sensors used in Columbia Ascent Analysis

4.2 IMS STS-107 Analysis Results

The results of the IMS analysis of the STS-107 Columbia launch are graphed in figure 4. The
horizontal axis represents time, beginning at the moment of lift off. The vertical axis represents

. , .

the IMS measure of deviation from nominal behavior, that is, the distance of the input vector
from the closest nominal cluster. The distance measure has been scaled to represent a percentage
of the maximum distance in the vector space covered by the training data. Results from the left
wing are represented by the lighter line, while right wing results are shown as a darker line for
comparison. The vertical line near time 15:40:22 shows the moment of the foam impact event
that breached the Thermal Protection System on the left wing. Notice that the IMS results for the
left and right wings track each other fairly well until shortly after the foam impact, at which point
they begin to diverge sharply. The IMS deviation values for the right wing continue to show
results within a reasonable range of nominal, while the left wing deviation values increase to
nearly 5 times those of the right wing. Although this analysis was performed off-line using
archived data, the techniques used could be implemented for real time monitoring. Significant
deviations in a group of sensors or asymmetrical results for identical sensor sets, especially of
large magnitude such as shown in this analysis, may provide indication of anomalies earlier in a
mission than current telemetry monitoring tools.

STS-107 Launch IMS Analysis

(centroid normalization window; 4 secondsj
with 3 corresponding sensors in each wing

2 5

2 0

5

i
j 10

5

0
15.42:Ol 15:43:02 15.44:02 15.45:03 15:46:03

Tim. (OMT)

-
-107 Len
.lo7 Rial -

Figure 4 - Results of IMS analysis of STS-107 Columbia launch

5.0 Conclusions and Future Work

These early results from the Inductive Monitoring System show that it is feasible to automatically
construct a useful system monitoring knowledge base from archived system data using clustering

that obtained by model based reasoning techniques, without requiring the cost and effort of
building system models. In addition, the IMS monitoring routine may be used for real time or
near real time system monitoring. As a mission control tool, IMS could help augment controller
awareness of vehicle health and provide early detection of possible anomalies. As shown by the
STS-107 analysis, IMS revealed evidence of the Thermal Protection System anomaly within

- techniques. -These knowledge_b_aes could provide system m_oniloriOg capability comparaAble_to ~ -

minutes of the foam strike while current mission control tools did not detect the problem until
Orbiter re-entry, 17 days later.

IMS applications currently under development include a turbine aircraft engine monitoring
system, and monitors for various subsystems of the Stratospheric Observatory for Mared
Astronomy (SOFIA), an airborne observatory co-developed by NASA and the German space
agency DLR. Techniques to assist in parameter selection for IMS vectors, analyze IMS result
trends, and integrate IMS monitoring with diagnostic routines are also being studied.

6.0 References

[11 D. Dvorak and B. Kuipers. “Model-Based Monitoring of Dynamic Systems ”, Proceedings of
the Eleventh International Joint Conference on Artificial Intelligence (IJCAI-89), Morgan
Kaufman, LosAltos, CA., 1989.

[2] R. Reiter. “A Theory of Diagnosis from First Principles ”, Artz3cial Intelligence, 32(1):57-
96, Elsevier Science, 1987.

[3] P.S. Bradley, O.L. Mangasarian, and W.N. Street. “Clustering via Concave Minimization”,
Advances in Neural Information Processing Systems 9, M.C. Mozer, M.I. Jordon, and T.
PetscheFds.), pp 368-374, MIT Press, 1997.

[4] P.S. Bradley and U. M. Fayyad. “Refining initial points for K--means clustering”, in
Proceedings of the International Conference on Machine Learning (ICML98), pp 9 1 --99, July
1998.

[5] M. Ester, H-P Kreigel, J. Sander, and X. Xu. “A Density-Based Algorithm for Discovering
C!iisters iE Lwge Spzitial Databases with Noise ”, Proceedings of the 2nd A C M S I G D D , pp 226-
231, Portland, OR, 1996.

[6] W.C. Hamscher. “ACP: Reason maintenance and inference control for constraint
propagation over intervals ”, Proceedings of the gh National Conference on Artificial Intelligence,
pp 506-5 1 1 , Anaheim, CA, July, 199 1.

[7] J.M Kleinberg. ’,Two Algorithms for Nearest-Neighbor Search in High Dimensions ”,
Proceedings of the 29“ Annual ACMSppos ium on l leory of Computing, pp 599-608, El Paso,
TX, May, 1997.

[8] H.W. Gehman, et al., “Columbia Accident Investigation Board Report”, U.S. Government
Printing Office, Washington, D.C., August 2003.

